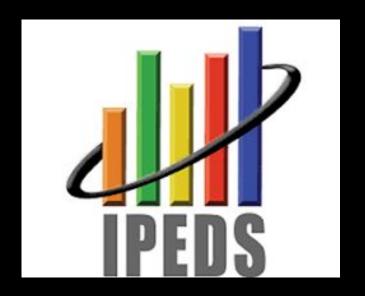


Clustering of U.S. Universities

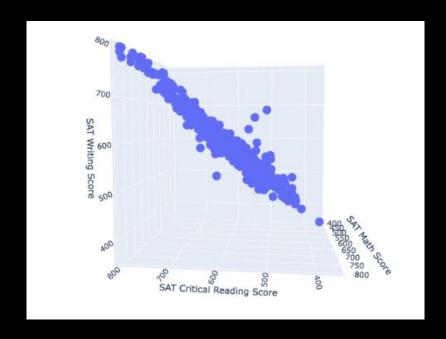
Project 2 - ANLT 212 Fall 2020

By Cameron Swanson and Marisol Hernandez

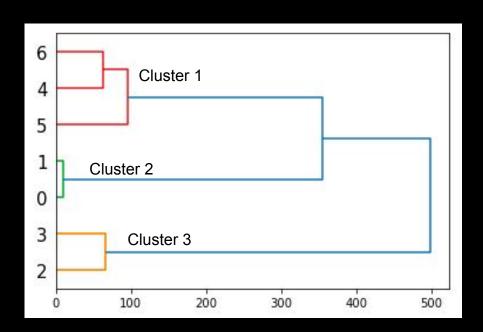

Case Study: San Francisco County Office of Education

<u>Problem:</u> College applicants have many factors to consider when deciding where to apply, including location, available majors, and standardized test scores -- these factors often make for a difficult choice.

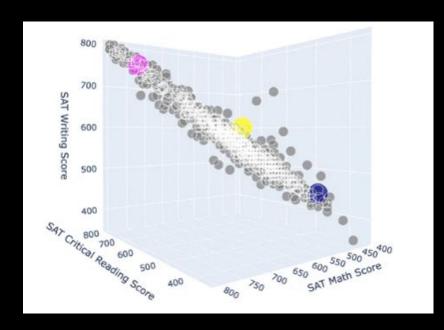
<u>Goal:</u> We built a recommendation engine that suggests schools to students based on their SAT component scores. High school counselors can use this model to help their students choose where to apply.


Data Collection

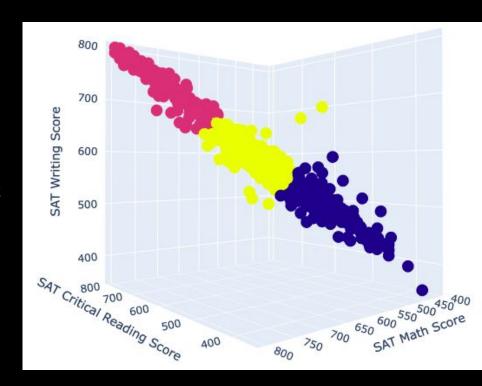
- IPEDS International Postsecondary Education Data System
 - Part of the National Center for Education Statistics
- 1534 U.S. universities, 145 features
- After cleaning: <u>705</u> universities, <u>3</u> features


Descriptive Visualization

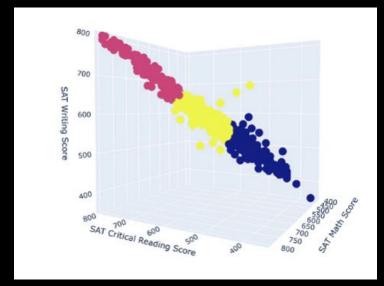
- 3D Scatter Plot
- Depicts universities by 75th percentile of SAT component scores (Reading, Writing, Math)
- Each data point:
 - University name
 - Accepted scores for each component


Cluster Analysis

- Hierarchical clustering allows us to determine optimal number of clusters (k)
- Assign clusters to each point, iteratively combine according to shortest distance
- Plot results with dendrogram
- For our data, k = 3

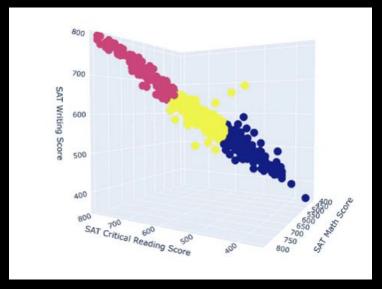

K-means Clustering

- K-Means clustering groups data into clusters based on similarities
- To do this, we define k number of centroids
 - Centroid = the center of a cluster
- We established k = 3 random centroids



K-means Algorithm

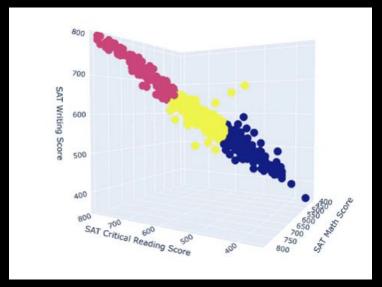
K-Means algorithm iteratively
 assigns each point to a centroid
 until the positions of the centroids
 are optimized.


- predictKNN() takes in a data point and classifies it based on the classification of its 5 nearest neighbors
- Data point = SAT scores in each component


```
# Iteration 2
predictKNN(5, [750,750,750], SAT)

SAT Reading Score: 750
```

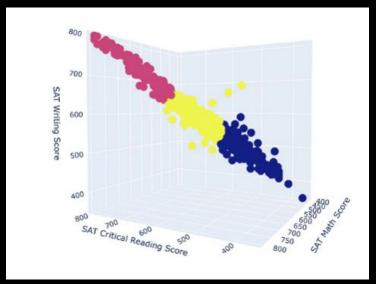
- predictKNN() takes in a data point and classifies it based on the classification of its 5 nearest neighbors
- Data point = SAT scores in each component




```
# Iteration 2
predictKNN(5, [750,750,750], SAT)

SAT Reading Score: 750
SAT Math Score: 750
```

 predictKNN() takes in a data point and classifies it based on the classification of its 5 nearest neighbors


Data point = SAT scores in each component


```
# Iteration 2
predictKNN(5, [750,750,750], SAT)

SAT Reading Score: 750
SAT Math Score: 750
SAT Writing Score: 750
```

- predictKNN() takes in a data point and classifies it based on the classification of its 5 nearest neighbors
- Data point = SAT scores in each component


```
# Iteration 2
predictKNN(5, [750,750,750], SAT)

SAT Reading Score: 750
SAT Math Score: 750
SAT Writing Score: 750
Prediction: Cluster # 1 Pink
```

Conclusion

 We recommend the SF County Office of Education to utilize our recommendation engine to better assist students during the college application process

• Benefits:

- Determine the schools a student should apply to
- Keep for future use can account for changes in SAT components
 - Universities can easily be added to the model